
Getting and setting the realtime clock and more

Apart from using timers, you can also get and set the current realtime clock, and adjust it
gradually. The following functions can be used for these purposes:

Function Type? Description

ClockAdjust() Neutrino Gradually adjust the time

ClockCycles() Neutrino High-resolution snapshot

clock_getres() POSIX Fetch base timing resolution

clock_gettime() POSIX Get current time of day

ClockPeriod() Neutrino Get/set base timing resolution

clock_settime() POSIX Set current time of day

ClockTime() Neutrino Get/set current time of day

Getting and setting

The functions clock_gettime() and clock_settime() are the POSIX functions based on the
kernel function ClockTime(). These functions can be used to get or set the current time of
day. Unfortunately, setting this is a "hard" adjustment, meaning that whatever time you
specify in the buffer is immediately taken as the current time. This can have startling
consequences, especially when time appears to move "backwards" because the time was
ahead of the "real" time. Generally, setting a clock using this method should be done only
during power up or when the time is very much out of synchronization with the real time.

That said, to effect a gradual change in the current time, the function ClockAdjust() can
be used:

int
ClockAdjust (clockid_t id,
 const struct _clockadjust *new,
 const struct _clockadjust *old);

The parameters are the clock source (always use CLOCK_REALTIME), and a new and
old parameter. Both the new and old parameters are optional, and can be NULL. The old
parameter simply returns the current adjustment. The operation of the clock adjustment is
controlled through the new parameter, which is a pointer to a structure that contains two
elements, tick_nsec_inc and tick_count. Basically, the operation of ClockAdjust() is very
simple. Over the next tick_count clock ticks, the adjustment contained in tick_nsec_inc is
added to the current system clock. This means that to move the time forward (to "catch
up" with the real time), you'd specify a positive value for tick_nsec_inc. Note that you'd
never move the time backwards! Instead, if your clock was too fast, you'd specify a small
negative number to tick_nsec_inc, which would cause the current time to not advance as
fast as it would. So effectively, you've slowed down the clock until it matches reality. A
rule of thumb is that you shouldn't adjust the clock by more than 10% of the base timing

resolution of your system (as indicated by the functions we'll talk about next,
ClockPeriod() and friends).

Adjusting the timebase

As we've been saying throughout this chapter, the timing resolution of everything in the
system is going to be no more accurate than the base timing resolution coming into the
system. So the obvious question is, how do you set the base timing resolution? You can
use the following function for this:

int
ClockPeriod (clockid_t id,
 const struct _clockperiod *new,
 struct _clockperiod *old,
 int reserved);

As with the ClockAdjust() function described above, the new and the old parameters are
how you get and/or set the values of the base timing resolution. The new and old
parameters are pointers to structures of struct _clockperiod, which contains two
members, nsec and fract. Currently, the fract member must be set to zero (it's the number
of femtoseconds; we probably won't use this kind of resolution for a little while yet!) The
nsec member indicates how many nanoseconds elapse between ticks of the base timing
clock. The default is 10 milliseconds, so the nsec member (if you use the "get" form of
the call by specifying the old parameter) will show approximately 10 million
nanoseconds. (As we discussed above, in "Clock interrupt sources," it's not going to be
exactly 10 milliseconds.)

While you can certainly feel free to try to set the base timing resolution on your system to
something ridiculously small, the kernel will step in and prevent you from doing that.
Generally, you can set most systems in the 1 millisecond to hundreds of microseconds
range.

http://127.0.0.1:63381/help/topic/com.qnx.doc.parse_software/s1_timer.html

	Getting and setting the realtime clock and more
	Getting and setting
	Adjusting the timebase

